
Chapter 2

Energy of macroscopic systems

2.1 Introduction

From now on we will focus on macroscopic systems. These are systems containing
many, say N = 1020, particles. To fully specify such a system would require the
specification of equally many particle positions and momenta (for classical parti-
cles) or quantum numbers (for small particles). Fortunately, this is not necessary.
Experimentally it is found that isolated systems evolve spontaneously to simple ter-
minal states, called equilibrium states. Macroscopically, these equilibrium states can
be characterised by a surprisingly small number of variables, such as the number of
particles, the volume and the energy.

2.2 Energy levels and degeneracy

2.2.1 The energy ladder

Let us first consider the energy U of a macroscopic system. The energy of this
system not only depends on a set of quantum numbers {n1, n2, . . .} specifying the
state, but also on the number of particles N and external parameters such as the
system volume V , or external fields like an electric field E or magnetic field B. For
simplicity we restrict ourselves to N and V .

If we order each possible energy state according to its energy value along the
vertical axis, we get a so-called energy ladder, see Fig. 2.1. We may now ask: where
is the current system located on this energy ladder? Instead of specifying a huge
list of quantum numbers, we will give a single number Φ(N, V, U) defined as1

Φ(N, V, U) = “ Number of states with (E(n1, n2, . . . ;N, V ) ≤ U)”. (2.1)

1Do not confuse this Φ with the potential energy.
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2. ENERGY OF MACROSCOPIC SYSTEMS

Figure 2.1: The energy lad-
der of a macroscopic system.
Usually the energy levels are
very close together. In that
case the number of states with
energy En,m ∈ [U,U + dU ] is
equal to Ω(U)dU , where Ω(U)
is the density of states.

In other words, Φ is the ordinal number of the state of the system, if we order all
states according to their energies.

There is one complication. From quantum mechanics we know that not all states
have different energies. With N and V fixed, the same energy may be accomplished
by a number of different combinations of quantum numbers {n1, n2, . . .}. It is there-
fore useful to alter our notation and use two quantum numbers n and m to specify
a certain state: n to numerate the energy level, and m to specify the state within
that level. Thus we denote the wave function of an energy eigenstate as

ψn,m (m = 1, . . . ,Ωn), (2.2)

where Ωn is the degeneracy of level n. If a system is prepared in a certain energy
eigenstate ψn,m, after which it is perfectly isolated, it will remain in this state for-
ever. However, perfect isolation is never possible, and small perturbations cause
the system to continuously jump between different states {ψn,m : m = 1, . . . ,Ωn}.
All this time, the energy level remains the same, and the energy of the system is
therefore given by

U = En,m(N, V ) = En(N, V ). (2.3)

If we now ask the question where the current system is located on the energy ladder,
we see that for degenerate states it is actually irrelevant whether the ordinal number
Φ(N, V, U) stops at the first or at the last state of that particular energy level.

2.2.2 Continuous approach: the classical limit

From quantum mechanics we know that for large systems the energy levels are
usually very close together. This allows us to adopt a continuous approach to the
concept of degeneracy: we define the number of states between energy U and U+dU
as Ω(N, V, U)dU , see Fig. 2.1. We then refer to Ω(N, V, U) as the density of states.
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2. ENERGY OF MACROSCOPIC SYSTEMS

Figure 2.2: One-dimensional represen-
tation of a crystal. The white particle
feels its neighbours through an interac-
tion potential (black line). For small
deviations around the equilibrium po-
sition, this is approximated by a har-
monic well (dashed line).

Clearly the density of states is calculated as

Ω(N, V, U) =
∂Φ

∂U
(N, V, U). (2.4)

Since in the classical limit energy is a continuous variable, we need an alternative
way to effectively count the number of states. This is accomplished by measuring
the volume of the phase space obeying Eq. (2.1) in units of the “fundamental unit
of 3N -dimensional phase space” h3N . This will be substantiated in section 8.2 and
the Appendix of chapter 8. The number of states with H ≤ U is calculated by the
following formula:

Φ(N, V, U) =
1

h3NN !

∫

d3Nr d3Np Θ
(

U −H(r3N , p3N )
)

, (2.5)

where Θ(x) is the Heaviside step function, defined as

Θ(x) =

{

0 (x < 0),
1 (x > 0).

(2.6)

Note that we integrate over all possible positions r and momenta p = mv of all N
particles. The Heaviside function will pick out only those combinations of positions
and momenta for which the Hamiltonian H is smaller than U . Finally we need to
explain the factor N !. According to quantum mechanics identical particles must
be indistinguishable. We have therefore overestimated the number of independent
states by a factor equal to the number of possible permutations of the N particles,
which is N !

2.2.3 Example 1: degeneracy of a harmonic crystal

As a first example we will calculate the degeneracy in a crystal of N identical
spherical particles. The particles are arranged in a periodic array, where each
particle feels forces from neighbouring particles, see Fig. 2.2. At specific points in
space (the lattice points) the sum of these forces averages out to zero. If we now
expand the potential energy in the neighbourhood of each of these lattice points to
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2. ENERGY OF MACROSCOPIC SYSTEMS

second order in displacement we get N identical harmonic oscillators.2 The energy
of N quantum mechanical harmonic oscillators of characteristic frequency ω is given
by

En1,...,n3N
= ~ω(n1 +

1

2
) + . . .+ ~ω(n3N +

1

2
)

=
3N

2
~ω + ~ω(n1 + . . .+ n3N ) = ~ω

(

3N

2
+M

)

(2.7)

M ≡ n1 + . . .+ n3N . (2.8)

Here the ni are non-negative integer quantum numbers. To calculate the number
of states Ω(U) at a certain total energy U , it is easier to first work with M =
U/(~ω) − 3N/2. We then need to calculate in how many ways we can partition M
(the number of quanta) in 3N pieces. Suppose we mark the quanta by a cross (×)
and the end of each piece by a bar (|), then one possible realisation for M = 8 and
3N = 6 would look like

×|| × ×| × | × ×× | × |

In this example n1 = 1, n2 = 0, n3 = 2, n4 = 1, n5 = 3, and n6 = 1. We can now
permute ×’s and |’s, except for the last one. The number of ways to do this is

Ω(N,M) =
(M + 3N − 1)!

M !(3N − 1)!
. (2.9)

This is the expression we were after. The degeneracy of a harmonic crystal is found
to increase fast with increasing energy U = ~ω (3N/2 +M). The total number of
states with an energy less than or equal to U = ~ω (3N/2 +M) is given by a sum
over all possible values for m in the range 0 to M (see Appendix A for a derivation):

Φ(N,M) =

M
∑

m=0

Ω(N,m) =
(3N +M)!

(3N)!M !

≈
[

(

1

M/3N
+ 1

)M/N (

1 +
M

3N

)3
]N √

1 +
3N

M

1√
6πN

(2.10)

≈
[

(

e

3~ω

U

N

)3
]N

1√
6πN

, (2.11)

where the last approximation is valid for not-too-low temperatures where M ≫ 3N .
Note that the main contribution is a function of U/N raised to the power N . This
will be used when we discuss extensivity and entropy.

2In principle the potential energy of a particle involves the positions of the surrounding particles.
Here we make the approximation that the surrounding particles are fixed to their respective lattice
positions.
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2. ENERGY OF MACROSCOPIC SYSTEMS

Figure 2.3: Each state of a
system of N particles in a box
can be represented by a point
on a hypercubic lattice. Here
we show only two axes, that
of n1 and n2. The number of
states with enery lower than
U is approximately equal to
(1/2)3N ’th of the volume of
a 3N -dimensional hypersphere
with radius R =

√

8mL2U/h2.

2.2.4 Example 2: density of states of an ideal gas

As a second example we will calculate Φ(N, V, U) and the density-of-states Ω(N, V, U)
of an ideal gas. According to quantum mechanics, the energy of an ideal gas of N
particles in a box of size V = L3 is given by

En1,...,n3N
=

h2

8mL2
(n2

1 + . . .+ n2
3N), (2.12)

where the ni are positive integer quantum numbers. To find Φ(N, V, U) we need to
estimate the number of different states, i.e. the number of different combinations
(n1, . . . n3N ), which yield an energy equal or lower than U . In other words, in how
many possible ways can we fulfill

n2
1 + . . . n2

3N ≤ 8mL2U

h2
. (2.13)

If we imaging a 3N -dimensional space with 3N orthogonal ni axes, we may think of
each state as a point on a 3N -dimensional hypercubic lattice, with lattice spacing
1, see Fig. 2.3. If the energy U is not too low (which is true in most practical
cases), the total number of lattice points obeying Eq. (2.13) is enormous and may
quite accurately be approximated by (1/2)3N ’th of the volume of a 3N -dimensional
hypersphere of radius R =

√

8mL2U/h2. The factor (1/2)3N is necessary because
only positive ni are allowed.

There is one additional factor that needs to be taken into account: identical
particles must be indistinguishable. We therefore have to correct the number of
independent states by a factor N !. Further using the expression for the volume of a
n-dimensional hypersphere (Problem 2-1), we find

Φ(N, V, U) =
1

N !

(

1

2

)3N
π3N/2

(3N/2)!

(

8mL2U

h2

)3N/2

. (2.14)
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2. ENERGY OF MACROSCOPIC SYSTEMS

Figure 2.4: Energy levels of a system of
particles in a box of volume V . The spacing
between the levels is h2/(8mV 2/3). The en-
ergy of the system can be altered by chang-
ing the volume of the box or by changing
the energy level, for example by exposing
the system to radiation or coupling it to a
heat reservoir.

Next we use the approximation N ! ≈ (N/e)N
√

2πN (Problem 2-2) to find the num-
ber of states with energy less than U :

Φ(N, V, U) =

[

( m

3π~2

)3/2

e5/2

(

U

N

)3/2 (

V

N

)

]N
1√
6πN

. (2.15)

The density of states is found by partial differentiation to U :

Ω(N, V, U) =

[

( m

3π~2

)3/2

e5/2

(

U

N

)3/2 (

V

N

)

]N
N

U

√

3

8

1

πN
. (2.16)

The number of states can also be calculated from the classical expression Eq. (2.5).
In Problem 2-3 you will show that this yields the same result.

2.3 Entropy

2.3.1 Changing the energy of a system

In general, if we now consider processes in a closed system (where N is constant),
Eq. (2.3) tells us that we can change the energy by changing the volume V or by
changing the energy level n. If changing the volume V is done gently enough,3

the energy will change while remaining in the same energy level n. Conversely,
the energy level n may be changed at constant volume by exposing the system to
radiation or coupling it to a heat reservoir. Both processes are depicted in Fig. 2.4.
The important point is that both n and V are independent experimental parameters
that specify the energy of a closed system.

Since there is a one-to-one relation between the energy level n and the ordinal
number Φ, we may just as well use Φ to specify the energy level of the system.

3The volume must be changed reversibly and adiabatically, as we will discuss later.
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2. ENERGY OF MACROSCOPIC SYSTEMS

We can carry this idea a little further, and conclude that we can use an arbitrary
monotonous function of Φ, let us call it S = S(Φ), to specify the energy level of the
system. Once we have chosen a functional dependence of S on Φ, the energy is a
function of N , V , and S. This is made explicit through the following notation:

En(N, V ) ≡ U(N, V, S). (2.17)

In thermodynamics we study the dependence of the quantities N , V , S, and U .
Sofar we have considered U to be a function of N , V , and S. Obviously we can also
consider S to be a function of N , V , and U .

2.3.2 Extensivity and entropy

Suppose we have two macroscopic, thermodynamically identical equilibrium sys-
tems, meaning two systems containing the the same kind of molecules, the same
number of molecules N , of the same volume V , the same energy U , and the same
energy level n, which we now express as “the same S”. Suppose we combine them
into one system. Schematically denoting this combination by ⊕, we find for the
number of molecules, volume, energy, and function S of the combined system:4

N ⊕N = 2N (2.18)

V ⊕ V = 2V (2.19)

U ⊕ U = 2U (2.20)

S ⊕ S = S ′. (2.21)

We say that the number of particles, the volume, and energy are extensive variables,
which are variables that depend linearly on the size of the system. An arbitrary
function S(Φ), however, is generally not extensive, nor is Φ itself.

We may now ask the question whether it is possible to find a particular function
S = S(Φ) such that S ′ = 2S? The answer is affirmative: the logarithm of Φ is
extensive. Let us therefore introduce a function S called entropy, which we define
as

S = k ln Φ, (2.22)

with k some constant.
Why is S = k ln Φ an extensive measure for the energy level number? For

macroscopic systems, in many cases we find

Φ = [ω(v, u)]N g(N, V, U), (2.23)

4Eqs. (2.18) and (2.19) are true by definition. Eq. (2.20) is an experimental result for sufficiently
large systems.
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2. ENERGY OF MACROSCOPIC SYSTEMS

where v = V/N and u = U/N . ω is some function monotonously increasing with
increasing v and u, and

lim
N→∞

g(N,Nv,Nu) = C(v, u)Nα, (2.24)

with α some constant of order 1. In taking this limit v and u must be kept con-
stant. We have already verified this explicitly for the case of a harmonic crystal, see
Eq. (2.10), and for an ideal gas, see Eq. (2.15). If we accept the validity of Eq. (2.23)
the rest of the proof is simple:

S = k ln Φ = Nk lnω + k ln g

= Nk

(

lnω +
1

N
ln g

)

. (2.25)

In the limit of large enough N

lim
N→∞

1

N
ln g(N,Nv,Nu) = lim

N→∞

1

N
[α lnN + lnC(v, u)] = 0. (2.26)

So indeed S = k ln Φ = Nk lnω is extensive. In Appendix B of this chapter we give
an alternative derivation.

Actually, if Eq. (2.23) holds true, the derivative of Φ with respect to U can also
be used instead of Φ in Eq. (2.22) (prove this yourself!), i.e. we may also write
Eq. (2.22) in the more familiar form

S = k ln Ω. (2.27)

In Appendix B of this chapter we give an additional argument for this expression.

2.4 Intensive variables

We have argued that the energy may be written as a function of N , V and S. The
first two are extensive by definition and by choosing S = k ln Φ or S = k ln Ω the
latter is also extensive. Let us see what this means for the energy of a combined
system of x identical copies:

U(xN, xV, xS) = xU(N, V, S). (2.28)

Differentiating to x, and setting x = 1 we find the interesting result

N
∂U

∂N
+ V

∂U

∂V
+ S

∂U

∂S
= U. (2.29)

Because U , N , V , and S are all extensive variables, the partial derivatives occurring
in Eq. (2.29) are all intensive. Intensive variables are independent of the size of the
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2. ENERGY OF MACROSCOPIC SYSTEMS

problem. The intensive variables are defined thermodynamically as the temperature,
pressure and chemical potential:

(

∂U

∂S

)

V,N

≡ T. (2.30)

−
(

∂U

∂V

)

N,S

≡ P. (2.31)

(

∂U

∂N

)

V,S

≡ µ. (2.32)

The minus sign in the definition of the pressure is for reason of convention: this
way the pressure usually is a positive quantity. Using these definition we see that
Eq. (2.29) may be written as

U = TS − PV + µN. (2.33)

At this point we have simply defined the partial derivatives as temperature,
pressure and chemical potential. In the next two sections we will show that the
first two of these derivatives agree with our intuitive notion of temperature and
pressure. The experimental importance and meaning of the chemical potential µ
will be discussed in section 3.8.

If we make infinitesimally small changes in all variables N , V and S, we can
formally expand U(N, V, S) and use the partial derivatives µ, P and T to write the
infinitesimal change in energy as

dU = TdS − PdV + µdN. (2.34)

This expression is referred to as the fundamental equation of thermodynamics. From
Eq. (2.33) we find

dU = TdS + SdT − PdV − V dP + µdN +Ndµ. (2.35)

Combining both expressions for dU we arrive at the so-called Gibbs-Duhem relation,

SdT − V dP +Ndµ = 0. (2.36)

This important result states that the three intensive variables T , P , and µ cannot
be varied independently. Notice that in order to completely describe the system we
need three variables. So we conclude that at least one of these variables must be
extensive. This is obvious (why?).
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2. ENERGY OF MACROSCOPIC SYSTEMS

2.5 Mono-atomic ideal gas

Let us see what our thermodynamic definitions give for a mono-atomic ideal gas of
N particles in a volume V . From Eq. (2.15) we find that the entropy is given by
(see Problem 2-4)

S = Nk ln

[

( m

3π~2

)3/2

e5/2

(

U

N

)3/2 (

V

N

)

]

. (2.37)

This allows us to express the energy of an ideal gas in terms of N , V and S:

U = Ne−5/3 3π~
2

m
e

2S

3Nk

(

N

V

)2/3

. (2.38)

We can now calculate the thermodynamic temperature and pressure of an ideal gas:5

kT = k

(

∂U

∂S

)

V

=
2U

3N
(2.39)

P = −
(

∂U

∂V

)

S

=
2U

3V
. (2.40)

Rewriting, we find

PV/N =
2U

3N
= kT (ideal gas). (2.41)

We could have derived the first equality in Eq. (2.41) directly from the energy of a
a system of N particles in a box (Problem 2-5).

U , V and N are all mechanical properties of the system. Once they are defined,
P and kT can be calculated. Note that T only appears in the combination with
the constant k, originating from Eq. (2.22). If we want to define numerical values
for T , we must introduce a numerical value for k. The Kelvin scale of temperature
is defined by assigning to k a value of 1.38 × 10−23 J/K. k is called the Boltzmann
constant. From now on we will label it consistently as kB. We further define the
gas constant as

R = NAvkB = 8.314 J/K/mol, (2.42)

with NAv = 6.022 × 1023 Avogadro’s number.
By rewriting the above equations, we find the following well-known relations for

an ideal gas:

PV = NkBT (2.43)

U =
3

2
PV =

3

2
NkBT. (2.44)

5The chemical potential is not important for our arguments here and will be derived elsewhere.
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2. ENERGY OF MACROSCOPIC SYSTEMS

Figure 2.5: We let a (non-ideal) system
come into contact with a small amount
of ideal gas, by means of a moveable wall
which can conduct heat, but does not let
through any particles. The combined sys-
tem + ideal gas is surrounded by insulat-
ing walls. Equilibrium will be achieved
when the pressure P and temperature T
of the system are equal to the pressure
P th and P th of the ideal gas. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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2.6 Measuring temperature and pressure with an

ideal gas

We can use the above results for an ideal gas to measure the temperature and
pressure of any non-ideal system. Figure 2.5 shows a system which comes into
contact with a small amount of ideal gas by means of a moveable wall which can
conduct heat, but does not let through any particles. The combined system + ideal
gas is surrounded by insulating walls. In Chapter 4 we will show that a configuration
like this will tend to an equilibrium situation in which the pressure and temperature
are the same in the system and in the ideal gas. If the volume of ideal gas is
much lower than the volume of the system, the ideal gas will effectively attain the
temperature and pressure of the system.

In the previous section we have shown that we can measure the pressure and
temperature in an ideal gas, so effectively we have a way to measure the pressure
and temperature of the non-ideal system too. The Boltzmann constant kB has been
chosen such that the temperature of a mixture of ice, water and water vapour in
mutual equilibrium (clearly a non-ideal system!) is associated with the number
T = 273.16 (Kelvin).

2.7 Thermodynamic processes

2.7.1 Work and heat

It is important to note that the energy of a macroscopic system in equilibrium is
a state function. This means that no matter by which process we go from a state
A, defined by the variables (NA, VA, SA), to a state B, defined by the variables
(NB, VB, SB), the energy difference ∆U = UB − UA between these two equilibrium
states will always be the same.

According to classical mechanics, if work is performed on a system while making
sure that there are no other influences, let us call this adiabatic work wadiab, then
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2. ENERGY OF MACROSCOPIC SYSTEMS

the energy increase of the system is given by

(∆U)adiab = wadiab. (2.45)

An adiabatic process is a special kind of process. In general, other influences cannot
be excluded: it is possible to start from the same state (A) and end in the same state
(B) by going through an entirely different process. In general, therefore, the amount
of work w performed on the system may be different from the adiabatic case, even
though ∆U will be the same. The difference between ∆U and the amount of work
w performed on a system is defined as the heat Q which has flown into the system.
In other words:

∆U = Q+ w. (2.46)

This is called the first law of thermodynamics. It is basically an expression of the
law of conservation of energy.

We can see an important consequence of Eq. (2.46): if we are able to tabulate
U for different values of the system’s thermodynamic variables, then we are able to
calculate Q+ w for each process leading from one set of variables to the other. We
emphasise again that the amount that was added or subtracted in the form of heat
relative to the amount that was added or subtracted in the form of work depends
entirely on the details of the process that was used.

2.7.2 Infinitesimal reversible processes

In the following we will consider a special class of processes, used in many ther-
modynamic considerations: reversible processes. From a practical point of view,
reversible processes are processes that are performed in a controlled and sufficiently
slow manner. One may think of a reversible process as a process which is sufficiently
slow in order that the system is always in equilibrium and which can be reversed by
small changes of the external forces. On reversing the process, all thermodynamic
variables will undergo exactly the same changes as in the forward process, only in
reverse order. This way the system and its surroundings return to their original
states.

All other processes are called irreversible processes. These are processes that
occur spontaneously in an isolated system, after an internal constraint has been
removed. We will say more about irreversible processes when we treat the second
law of thermodynamics in chapter 4.

Adiabatic infinitesimal reversible process

Consider the piston in Fig. 2.6. The walls of the cylinder and the piston are insu-
lated, so changing the height of the piston amounts to performing adiabatic work.
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2. ENERGY OF MACROSCOPIC SYSTEMS

Figure 2.6: The external pressure P ext

on this system of a cylinder and piston
is defined as the ratio externally applied
force F ext and piston area A. The cylin-
der’s volume is decreased by moving the
piston down under the influence of this
external force. This may be done re-
versibly or irreversibly. If the compres-
sion is done reversibly, at each step the
external pressure P ext is in equilibrium
with the pressure P inside the cylinder.

According to classical mechanics, Eq. (1.41), the adiabatic work done on the system
when changing the height of the piston by an infinitesimal amount ds under the
influence of an external force F ext is equal to

wadiab = F extds

dt
dt = F extds. (2.47)

Mechanically, the externally applied force F ext may be thought of as the product of
externally applied pressure P ext and the area A over which this pressure is applied,

F ext = P extA. (2.48)

Without heat exchange, the (infinitessimal) increase of energy dU of the system is
determined solely by the total amount of work performed by the external force to
decrease the system’s volume, i.e.

(dU)rev,adiab = P extA ds = −P extdV, (2.49)

where we have used that the change in volume of the cylinder is given by dV = −Ads.
Up to this point we have considered the cylinder and piston from a mechanical

point of view. Now we will approach it from a statistical mechanical point of view.
First we need to ask: what does it mean to change the volume adiabatically? It
means that only the external parameters (in our case only the volume V ) of the
quantum mechanical energy level will change, but the system will not jump from
one energy level to another. According to Fig. 2.4 this means that an adiabatic
process takes place at a constant energy level n, i.e. at constant entropy S. If
the entropy S is constant and the number of particles N is constant, according to
Eq. (2.31) the infinitesimal increase of system energy is given by

(dU)rev,adiab = −PdV. (2.50)
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Figure 2.7: The energy is changed by
giving random kicks (represented by box-
ers) to the boundary of the system. The
boxers can also absorb energy. This is
representative of coupling to a thermo-
stat (or heat reservoir).

Comparing this with the mechanical definition Eq. (2.49), we find

P = P ext (reversible). (2.51)

The thermodynamic pressure, defined in Eq. (2.31), has the correct physical inter-
pretation: at each small step in an adiabatic reversible process, the pressure P of
the system is in balance with the externally applied mechanical pressure P ext.

Isochoric infinitessimal reversible process

A process in which the volume is kept constant is called an isochoric process. More
generally, we are now going to focus on processes that change the energy level of
the system without changing the external parameters. From a quantum mechanical
point of view, this may be accomplished by absorption or emission of light (see
Fig. 2.4). From a classical mechanical point of view, this may be accomplished by
coupling the system to a thermostat (or heat reservoir), as in Fig. 2.7. The walls
of the system are fixed, so the volume of the system does not change (dV = 0).

We slowly increase the temperature T th of the thermostat, i.e. the activity of
the “boxers”, in many small steps while letting the system equilibrate at each step
and measuring the amount of heat q that streams into the system.6

Because w = 0, the increase of energy of the system is equal to the amount of
heat that has transferred from the thermostat to the system:

(dU)rev,isoch = q. (2.52)

6This may for example be accomplished by using an ideal gas thermostat with known specific
heat, CV = 3

2
N thkB, and by dividing each small step into two substeps: (1) Increasing the temper-

ature of the thermostat slightly, for example by shortly applying a current to an electric heating
element embedded in the thermostat, without letting heat flow between the thermostat and the
system, and (2) letting heat flow from the thermostat to the system. Before executing substep
(2) we measure the temperature of the equilibrated thermostat. After substep (2) we give the
system and thermostat enough time to equilibrate again to a new state and once more measure
the temperature of the thermostat. The amount of heat that flown from the thermostat into the
system is equal to q = −CV dT th. The minus sign arises because a positive q is associated with a
negative temperature change dT th of the thermostat.
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On the other hand, if the volume V is constant and the number of particles N is
constant, according to Eq. (2.31) the infinitesimal increase of system energy is given
by

(dU)rev,isoch = TdS. (2.53)

Comparing Eqs. (2.52) and (2.53) we find that for a reversible isochoric process

dS =
( q

T

)

rev
. (2.54)

A reversible flux of heat into a system is associated with an increase of entropy of
that system.

2.7.3 General reversible processes

For a general finite reversible process in a closed system, involving both volume and
entropy changes, the increase of energy U of the system may be found by integration:

∆U =

∫

TdS −
∫

PdV. (2.55)

We recognise two contributions to the increase of energy of the system: heat that
has flown into the system and (volume) work done on the system. Both may be
calculated separately:

1. In a reversible process the temperature of the system remains a well-defined
quantity during all intermediate stages of the process. A reversible process may
be shown as a continuous line in a temperature versus entropy plot, where the
integral under the line yields the total heat supplied to the system:

Q =
∫

TdS (any reversible process). (2.56)

2. In a reversible process the pressure P of the system remains a well-defined
quantity during all intermediate stages of the process. A reversible process
may be shown as a continuous line in a pressure versus volume plot, where the
integral under the line yields (minus) the volume work done on the system:

w = −
∫

PdV (any reversible process). (2.57)

As already stated several times, the relative contributions of work and heat in
Eq. (2.55) depend very much on the details of the process leading from A to B.
However, because the energy U = U(N, V, S) is a state function, the total energy
difference ∆U = UB − UA between two equilibrium states does not depend on the
details of the process taken between states A and B, see Fig. 2.8.
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Figure 2.8: The energy U is a state
function, meaning that the energy dif-
ference UB − UA between two equilib-
rium states does not depend on the
path taken between states A and B: the
paths 1, 2, and 3 will all correspond to
the same increase of energy, although
the relative amounts of work and heat
differ.

2.7.4 General irreversible processes

Finally, for an irreversible process the pressure and temperature are generally unde-
fined, except for the equilibrium states at the beginning and the end of the process.
As a consequence, it is impossible to determine the work and heat by performing
the integrals in Eqs. (2.56) and (2.57). However, we have seen that for any pro-
cess (whether reversible or irreversible) the work w can be calculated based on our
knowledge of the external force:

w = −
∫

P extdV. (2.58)

We can then use the first law of thermodynamics to calculate the heat Q that has
flown into the system as the difference between the energy increase and the work
done on the system.

2.8 Equations of state

We have seen that we can characterise a system in equilibrium by just a small num-
ber of variables. How many variables do we need to specify exactly to completely
characterise a system? For a homogeneous one-component system the answer is
three variables, at least one of which is extensive. In case of a closed system (where
the number of particles is fixed), only two variables matter. By specifying two inde-
pendent variables, the third is therefore fixed. In other words, there is a functional
dependence between the three variables. For example:

closed: P = P (V, T ) only two independent variables

open: P = P (V/N, T ) only two independent intensive variables.

Such functional dependences are called equations of state. We will now explore some
well-known equations of state.
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2.8.1 Ideal gas equation

We have already encountered the ideal gas in the previous section:

Pv = RT (2.59)

v = V/n (2.60)

n = N/NAv. (2.61)

This equation is valid for dilute gases. It is impossible to give general criteria that
determine whether a gas can be considered dilute or not. As a rule of thumb we
can say that for temperatures sufficiently far above the critical temperature and
pressures lower than five times the critical pressure, the ideal gas equation is valid.
Examples are noble gases, N2, H2, O2, CO and CO2 at room temperature or higher,
at pressures lower than 100 bar.

2.8.2 Virial equation

Pv = RT

(

1 +
B(T )

v
+
C(T )

v2
+ . . .

)

. (2.62)

B and C are independent of the volume V , but do depend on the temperature T .
In this form the equation of state is v-explicit. The ρ-explicit form (ρ = N/V ) is:

P = ρkBT
(

1 +B2(T )ρ+B3(T )ρ2 + . . .
)

. (2.63)

B2 and B3 are called the second and third virial coefficients, respectively. Again
B2 and B3 are temperature dependent. The virial equation cut after the second,
quadratic, term is valid in a larger range of temperatures and pressures than the
ideal gas equation, and is much more accurate in that range.

2.8.3 Van der Waals equation

P =
RT

v − b
− a

v2
. (2.64)

Here b represents the diminishing of the (free) volume caused by the presence of the
molecules, and a represents attractions between the molecules. With this equation
it is possible to describe both the liquid and gas phase. In Fig. 2.9 we have drawn
three isotherms. The isotherm with T < Tc does not monotonically decrease, but
has a local minimum and maximum. At high pressures the isotherm corresponds to
a liquid phase and at low pressures it corresponds to a gas phase. In the intermediate
area one can find, for each pressure, three different values for the volume, which is
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Figure 2.9: Isotherms of the van der Waals
equation of state at T/Tc = 0.8, 1.0 and
1.2. For T < Tc there is a liquid phase
at high pressure and a gas phase at low
pressure. In the intermediate area, at the
vapour pressure, the two phases will co-
exist. The vapour pressure can be found
by means of the Maxwell construction, in
which the grey areas are of equal size.

of course not very realistic. Only at a certain pressure, the vapour pressure at that
given temperature, the equation of state should produce two volumes, in between
of which the isotherm should be horizontal. The vapour pressure can be found by
finding that pressure at which both grey areas in Fig. 2.9 are of equal size. This is
called the Maxwell construction. A proof will be postponed to Problem 3-4.

Tc in the above paragraph is the critical temperature, above which the distinction
between a liquid and a gas disappears. The critical pressure Pc and volume vc are
defined as the pressure and volume on the critical isotherm where

(

∂P

∂v

)

T

=

(

∂2P

∂v2

)

T

= 0 (critical point). (2.65)

For the van der Waals equation of state these are given by (see Problem 2-6)

Tc =
8a

27bR
, Pc =

a

27b2
, vc = 3b.

In Problem 2-7 you are asked to calculate the second virial coefficient of the van der
Waals equation of state and in Problem 2-8 you are asked to calculate the molar
volume of methane using both the ideal gas and van der Waals equation of state.

2.8.4 Redlich-Kwong equation

There are many modifications of the van der Waals equation which are very suc-
cessful. One of the simplest of these is the Redlich-Kwong equation of state,

P =
RT

v − b
− a

T 1/2v(v − b)
. (2.66)

The constants a and b can again be related to the conditions at the critical point:

a = 0.42748R2T
5/2
c

Pc

, b = 0.08664R
Tc

Pc

.
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Appendix A

The degeneracy of a harmonic crystal of energy U = ~ω (3N/2 +M) is given by

Ω(N,M) =
(M + 3N − 1)!

M !(3N − 1)!
≡

(

M + 3N − 1
M

)

, (2.67)

where we have used the standard notation for binomial coefficients. The values of
binomial coefficients may be obtained by constructing Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

This triangle is generated by setting the numbers at the edges equal to 1 and all
other numbers equal to the sum of the two numbers above. In binomial notation
this means that (with i ≥ j > 0)

(

i
j

)

=

(

i− 1
j

)

+

(

i− 1
j − 1

)

. (2.68)

By iteratively using this equation we find:

(

i
j

)

=

(

i− 1
j

)

+

(

i− 2
j − 1

)

+

(

i− 2
j − 2

)

= . . .

=

(

i− 1
j

)

+

(

i− 2
j − 1

)

+ . . .+

(

i− j − 1
0

)

. (2.69)

This result may be used to calculate the total number of states Φ(N,M) of a har-
monic crystal with energy equal to or less than U = (3N/2 +M):

Φ(N,M) =

M
∑

m=0

(

m+ 3N − 1
m

)

=

(

M + 3N
M

)

≈
(

M + 3N

e

)M+3N
( e

M

)M ( e

3N

)3N

√

2π(M + 3N)

(2πM)(2π3N)

=

[

(

1 +
3N

M

)M/N (

1 +
M

3N

)3
]N √

1 +
3N

M

1√
6πN

. (2.70)
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Figure 2.10: Because Ω(U) is a sharply
increasing function of U , the integrand of
Eq. (2.72) is a sharply peaked function
around ǫ = 0.

Here we have used that N ! ≈ (N/e)N
√

2πN , see Problem 2-2, and written the
result such that the dependence on the ratio M/N becomes clear. At not-too-low
temperatures the number of available quanta is much larger than the number of
oscillators, i.e. M ≫ 3N , in which case Φ can also be written as

Φ(N,M(U)) ≈ e3N

(

M

3N

)3N
1√

6πN
=

(

Ue

3N~ω

)3N
1√
6πN

, (2.71)

where we have used that limn→∞(1 + x/n)n = exp(x).

Appendix B

Suppose we bring two identical systems into thermal contact. Heat is allowed to flow
from one system to the other, temporarily increasing the energy of one system, while
decreasing the energy of the other. The total energy, however, is always conserved.
The density of states of the combined system is therefore given by

Ω(2U, 2N, 2V ) =

∫

dǫ Ω(U + ǫ, N, V )Ω(U − ǫ, N, V ). (2.72)

As shown in Fig. 2.10, the integrand is a sharply peaked function around ǫ = 0.
We can therefore write

Ω(U + ǫ)Ω(U − ǫ) ≈ [Ω(U)]2 exp
(

−Aǫ2
)

(2.73)

Ω(2U) =

∫

dǫ [Ω(U)]2 exp
(

−Aǫ2
)

= [Ω(U)]2
√

π/A, (2.74)

with A some constant characteristic of the width of the sharply peaked function.
More generally, apart from irrelevant constants such as the factor

√

π/A above,

Ω(xU) = [Ω(U)]x . (2.75)

This may be used to show that k ln Ω is the only possible extensive function of Ω.
We look for an extensive function S such that

S(Ω(xU, xN, xV )) = xS(Ω(U,N, V )) ⇒
S(Ωx) = xS(Ω).
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Differentiating with respect to x gives

S ′(Ωx)
d

dx
Ωx = S(Ω)

S ′(Ωx)Ωx ln Ω =
1

x
S(Ωx)

S ′(Ωx)

S(Ωx)
=

1

Ωx ln Ωx

d

dΩx
lnS(Ωx) =

d

dΩx
ln(ln Ωx)

S(Ωx) = k ln Ωx.

So, we again find S(Ω) = k lnΩ. Note that we have ignored the possibility that S
may also depend explicitly on x. Taking this into account leads to S(Ω(xU, xN, xV ), x) =
k ln Ω(xU, xN, xV )+cx, where c is some constant that may be used to fix a reference
state for the entropy.

Problems

2-1. Volume of an n dimensional hypersphere. A hypersphere in n dimensions
consists of all points {x1, . . . , xn} for which (

∑n
i=1 x

2
i ) ≤ R2. Show that the volume

of this hypersphere, for even n, is given by

Vn =
πn/2

(n/2)!
Rn

(Hint: first consider the unit sphere in n dimensional space. Use polar coordinates
(r, θ) for the first two coordinates. For every point (r, θ), there is a sphere in n− 2
dimensions with radius

√
1 − r2. Let vn−2 be the volume of the unit sphere in n− 2

dimensions. Scale by the radius, and the volume of the sphere at a distance r from
the origin is vn−2 × (1− r2)

1

2
(n−2). Integrate with respect to r and θ (remember that

the Jacobian of polar coordinates is r) to find the volume of the unit sphere in n
dimensions. The result should be

vn =
2π

n
vn−2.

Use a well known limiting case to iteratively generate the volumes of unit spheres
in even n dimensions.)

2-2. Stirling and other approximations to N !
a) We can write lnN ! as

∑N
n=1 lnn. Prove that lnN ! ≈ N lnN−N or N ! ≈ (N/e)N

(this is called Stirling’s approximation).
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b) Show that N ! =
∫

∞

0
dx xNe−x =

∫

∞

0
dx e−x+N ln x.

c) Expand the function f(x) = −x +N ln x around its maximum, and show that a
more precise approximation for N ! is (N/e)N

√
2πN .

2-3. Classical number of states in an ideal gas. Starting from the classical
expression for the energy of a collection of N ideal particles in a box, and using
Eq. (2.5), derive the number of states Φ(U) with an energy equal of less than U
in an ideal gas. Compare your result with the quantum mechanical result derived
in Eq. (2.15). (Hint: for an ideal gas the Hamiltonian is simply the sum of kinetic
energies H =

∑

i p
2
i /(2m), and each particle is restricted to the same volume V .)

2-4. Entropy of an ideal gas. Use Eq. (2.15) to prove Eq. (2.37). Discuss why
it was important to include the quantum mechanical correction 1/N !.

2-5. Pressure of an ideal gas. The energy of an ideal gas consisting of N particles
in a box of volume V (see also Problem 1-5) is given by:

U = En1,...,n3N
=

h2

8mL2
(n2

1 + . . .+ n2
3N) =

1

V 2/3

h2

8m
(n2

1 + . . .+ n2
3N ).

Show that from this equation we can already calculate the pressure of an ideal gas:

P =
2U

3V
,

without explicit knowledge of the entropy S. (Hint: remember that constant en-
tropy S implies constant energy level n.)

2-6. Critical point of the van der Waals equation of state. Prove that
the critical point of the van der Waals equation of state, Eq. (2.64), is given by
Tc = 8a/(27bR), Pc = a/(27b2) and vc = 3b.

2-7. Virial coefficient of the van der Waals equation of state. Calculate the
second virial coefficient B of the van der Waals equation of state. Compare with
the experimental value for methane:

B

vc

= 0.430 − 0.886
Tc

T
− 0.694

(

Tc

T

)2

.

2-8. Molar volume of methane. Calculate the molar volume of methane at 250
K and 10 MPa, both with the ideal gas equation and the van der Waals equation.
Given: Tc = 190.6 K and Pc = 4.604 MPa. Experimentally: v = 0.1376 litre/mole.
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Chapter 3

Thermodynamic functions and

applications

In this chapter we will treat some thermodynamic applications of the ideas developed
in the previous chapter.

3.1 Work and heat for reversible processes

As we have seen, the first law of thermodynamics states that the energy of a system
may be increased by adding heat Q or by performing work w on the system,

∆U = Q+ w. (3.1)

In most experimental situations we do not have control over the heat or work, but
rather control the pressure and/or the temperature. For these cases we will now
introduce useful thermodynamic functions.

3.1.1 Isobaric processes: the enthalpy H

Suppose a process is taking place under constant external pressure P ext. If the
process is done reversibly, then the pressure of the system will always be equal to
the external pressure,

P = P ext = const. (3.2)

This is called an isobaric process. For such a process it is useful to distinguish
between volume work wvol and other forms of work w′ performed on the system.
According to Eq. (2.57) then

w = w′ + wvol = w′ − P∆V (3.3)
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The change in energy then is

∆U = Q+ w′ − P∆V = Q+ w′ − ∆(PV )

∆H = ∆(U + PV ) = Q+ w′, (3.4)

where we have defined the enthalpy H ,

H ≡ U + PV. (3.5)

Because U , P and V are all system properties, H is also a system property. For quasi-
static isobaric processes, the enthalpy is a more useful thermodynamic quantity than
the energy U : by tabulating H for different values of the system parameters, we are
able to calculate Q+ w′ for each process.

3.1.2 Isothermal processes: the free energy A

For an isothermal reversible process the added heat is given by

Q = T∆S = ∆(TS). (3.6)

The change in energy is therefore

∆U = ∆(TS) + w (isothermal). (3.7)

For isothermal reversible processes, the work w done on the system is given by the
difference in free energy A:

∆A = w (isothermal), (3.8)

where A is defined as

A ≡ U − TS. (3.9)

The free energy is sometimes also denoted as F , especially in the chemical literature.

3.1.3 Isothermal isobaric processes: the free enthalpy G

For an isothermal isobaric process the added heat and volume work are given by,
respectively,

Q = T∆S = ∆(TS) (3.10)

wvol = −P∆V = −∆(PV ). (3.11)

The change in energy is therefore

∆U = ∆(TS) − ∆(PV ) + w′ (isothermal isobaric). (3.12)
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For isothermal isobaric processes, the work w′ done by other means is given by the
difference in free enthalpy G:

∆G = w′ (isothermal isobaric), (3.13)

where G is defined as

G ≡ U − TS + PV. (3.14)

The free enthalpy is also known as the Gibbs free energy.

3.2 Specific heat

3.2.1 Definition of specific heat

The specific heat (or heat capacity) of a system is the amount of heat that must be
added in order to raise the temperature of the system by one degree Kelvin. The
exact amount of heat depends on whether the heat is added under constant volume
(isochoric) or constant pressure (isobaric) conditions:

isochoric process qV ≡ CV dT (3.15)

isobaric process qP ≡ CPdT. (3.16)

The relation to the system properties is found by writing

dU =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV (3.17)

(dU)V =

(

∂U

∂T

)

V

dT = qV

and hence

CV =

(

∂U

∂T

)

V

= T

(

∂S

∂T

)

V

. (3.18)

Similarly

dH =

(

∂H

∂T

)

P

dT +

(

∂H

∂P

)

T

dP (3.19)

(dH)P =

(

∂H

∂T

)

P

dT

(dH)P = qP ,
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and hence

CP =

(

∂H

∂T

)

P

= T

(

∂S

∂T

)

P

. (3.20)

For the case of an ideal gas, the energy is given by U = 3
2
NkBT = 3

2
nRT , so

(

∂U

∂T

)

P

=

(

∂U

∂T

)

V

(3.21)

(

∂H

∂T

)

P

=

(

∂U

∂T

)

P

+

(

∂(PV )

∂T

)

P

=

(

∂U

∂T

)

V

+ nR, (3.22)

which implies a simple relation between CP and CV :

CP = CV + nR (ideal gas). (3.23)

3.2.2 Specific heat of a harmonic crystal

We will now try to calculate the specific heat of a crystal of N identical spherical
particles. In section 2.2.3 we have seen that the degeneracy of a harmonic crystal
of energy U = ~ω(3N/2 +M) is given by1

Ω(M) =
(M + 3N − 1)!

M !(3N − 1)!
. (3.24)

The entropy is now given by

S(M) = kB ln Ω

= kB(3N +M − 1) ln(3N +M − 1)

−kB(3N − 1) ln(3N − 1) − kBM lnM. (3.25)

In theory we can then invert this and find M = M(S), i.e. U = ~ω[3N/2 +M(S)].
In this case it is more practical, however, to express S in terms of U and use

dS =
1

T
dU +

P

T
dV. (3.26)

It is then an easy task (see Problem 3-1) to calculate T and U(T ), from which follows

CV = 3NkB

(

~ω

kBT

)2
e−~ω/(kBT )

(1 − e−~ω/(kBT ))
2 . (3.27)

A graph of Eq. (3.27) is given in Fig. 3.1. For temperatures kBT ≫ ~ω, the heat

1Note that we did not need to include a quantum symmetry factor 1/(N !), because the particles
are bound to the lattice positions, and are therefore in principle distinguishable.
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Figure 3.1: Heat capacity of the (quantum
mechanical) harmonic crystal as a function
of temperature. Note that CV → 0 as T →
0. 0 1 2 3 4 5
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capacity of a harmonic crystal is approximately 3NkB, which agrees with the result
in the classical limit. At low temperatures kBT ≪ ~ω, however, CV (T ) → 0. This
surprising result is a consequence of our quantum mechanical treatment, in which
the energy of the harmonic oscillators can only have discretized values.

3.3 Quasi-static adiabatic changes of an ideal gas

Suppose we quasi-statically (reversibly) compress or expand an ideal gas. Further-
more, we do not allow any heat to be exchanged with the surroundings, q = 0, i.e.
we are studying an adiabatic process. Because the process is quasi-static, at each
instant the energy increase or decrease is given by

dU = −PdV = −nRT
V

dV. (3.28)

On the other hand, for an ideal gas the energy is only a function of the temperature,
U = U(T ), hence

dU = ncV dT, (3.29)

where we have defined cV as the specific heat per mole molecules. Equating Eqs. (3.28)
and (3.29) we find

dV

V
= −cV

R

dT

T
V = cst.T−cV /R

PV = nRT = cst.V −R/cV

PV γ = cst. (adiabatic) (3.30)

γ = cP/cV . (3.31)
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γ is called the specific heat ratio. For an ideal gas, according to Eqs. (2.44) and
(3.23), it is equal to 5/3. Note that γ > 1, so at any point (V0, P0) in a PV -diagram
an adiabatic line going through (V0, P0) will have a larger (more negative) slope
than an isothermal line going through (V0, P0). In Problem 3-2 you are asked to
calculate the work done on an ideal gas when it is quasi-statically and adiabatically
compressed. A clever way to measure γ is described in Problem 3-3.

3.4 Entropy differences

3.4.1 Reversible processes

In section 2.7.2 we have seen that, at each point along the path of a reversible
process, the entropy increase is

dS =
( q

T

)

rev
(reversible). (3.32)

So, for a reversible processes from state A to B the change in entropy is

adiabatic ∆S = 0 (3.33)

isochoric ∆S =

∫

CV

T
dT = CV ln

TB

TA

(3.34)

isobaric ∆S =

∫

CP

T
dT = CP ln

TB

TA
(3.35)

isothermal ∆S =

∫

q

T
(3.36)

isothermal, ideal ∆S =

∫

q

T
=

∫

P

T
dV =

∫

nR

V
dV = nR ln

VB

VA

= −nR ln
PB

PA

.

(3.37)

In the second and third equation we have assumed that the specific heat is indepen-
dent of temperature. The last equation is only valid for an ideal gas, where we have
used dU = q − PdV = 0 (explain why!).

In Problems 3-4 and 3-5 you are asked to calculate the entropy increase in dif-
ferent combinations of reversible processes.

A reversible process may start and end in the same state point, forming a cycle
in a P −V diagram. When the cycle is formed by two isotherms and two adiabatics,
it is called a Carnot process. In Problem 3-6 you are asked to calculate the efficiency
of a Carnot process.
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3.4.2 Irreversible processes

If we want to measure the entropy increase of an irreversible process, we need to
construct an auxiliary reversible process from the same initial condition to the same
final condition, and use Eq. (3.32) for that process.

For example, let an ideal gas expand at constant T against vacuum. Because
we are dealing with an ideal gas ∆U = 0 and because we are expanding against
P ext = 0 we have w = 0. So we conclude that Q = 0, i.e. heat is produced nor
consumed in the process. However, we cannot conclude that ∆S = 0. To calculate
∆S we expand the system reversibly and isothermal, in which case Eq. (3.37) applies:
∆S = nR ln(VB/VA).

In Problems 3-7 and 3-8 we will consider the case of two bodies at different
temperature coming into thermal contact, leading to irreversible flow of heat from
the hotter body to the cooler body. You will discover that the entropy increase is
maximal when the two bodies have reached the same temperature. This will be the
topic of chapter 4.

3.5 Reference states

3.5.1 Chemical reactions and reference state

Until now we have talked about energy and enthalpy differences only. The existence
of a reference state in which U = 0 or H = 0 was, in fact, irrelevant. In practice, one
often chooses a reference state for H because it is easier to do experiments under
constant pressure conditions.

One should beware, however, that one is not entirely free in choosing reference
states when chemical reactions occur in the system. For example when burning
methane

CH4 + 2O2 → CO2 + 2H2O (3.38)

under isobaric conditions the enthalpy increase per mole is, by definition,

∆h = qP . (3.39)

Looking at the reaction formula, one would guess that the heat produced by this
reaction is

qP = hCO2
+ 2hH2O − hCH4

− 2hO2
, (3.40)

in which case the enthalpy of the water molecules is

hH2O =
1

2
(hCH4

+ 2hO2
− hCO2

+ qP ) . (3.41)
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What this equation shows is that one cannot choose an arbitrary reference state
for each component independently: the reference enthalpy of the water molecules is
related to the reference enthalpies of the other molecules. Only for an independent
set of substances can reference states be chosen at will.

3.5.2 Standard enthalpy and enthalpy of formation

To overcome difficulties in communicating experimental results, a convention for the
standard enthalpy has been established. The standard enthalpy is that enthalpy for

which the elements in stable form at standard reference state have enthalpy equal to

zero. The standard reference state is defined as T 0 = 298.15 K and P 0 = 1 atm.,
where 1 atmosphere = 1.01325 × 105 Pa.

The notation for a chemical reaction, such as the one used in the previous section,
is

CO2 + 2H2O − CH4 − 2O2 = 0 (3.42)
∑

i

νiAi = 0. (3.43)

Using the stoichiometric coefficients νi, we can express the reaction enthalpy or
change of specific heat as

∆hr =
∑

i

νihi (3.44)

∆cpr =
∑

i

νicpi. (3.45)

This is easily generalized to changes in other properties. Note that ∆hr is the
reaction enthalpy per mole at the standard reference state, i.e. at T 0 = 298.15 K
and P 0 = 1 atm. In order to calculate the reaction enthalpy at another temperature,
it is useful to know the change of specific heat at intermediate temperatures, see
Problem 3-9.

Finally, it is useful to know the enthalpy of formation ∆hf of a certain substance.
The enthalpy of formation of a substance is the reaction enthalpy of a reaction in

which the particular substance is formed from its elements. Usually tables contain
∆h0

f , i.e. the enthalpy of formation at the standard state. For example, the stan-
dard enthalpy of formation of carbon dioxide would be the reaction enthalpy of the
following reaction under standard conditions:

C(solid graphite) + O2 (gas) → CO2 (gas). (3.46)
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3.5.3 Standard entropy, absolute entropy and the third law

of thermodynamics

Just as in the case of energy and enthalpy, until now we have focused on entropy
differences. As long as no chemical reactions take place we can choose for each
substance an arbitrary reference state. If chemical reactions do occur, we need to
choose the reference states in an internally consistent manner. The simplest case
is, again, by choosing the reference states for the (stable) elements. The standard

entropy is defined by putting the entropies of the elements at standard conditions
(T 0 = 298.15 K and P 0 = 1 atm.) equal to zero.

Another choice for the reference states of the elements leads to the so-called
absolute entropy. Experimentally it is found that for all processes

lim
T→0

∆S = 0. (3.47)

In words: near absolute zero temperature, the entropy change of any process is
nearly zero. This is verified to such a good extent that it is sometimes referred to
as the third law of thermodynamics. Moreover, using statistical thermodynamics
it can be made very plausible. If we now set the entropy of the elements at 0 K
equal to 0, Eq. (3.47) predicts that also all other substances at 0 K have an entropy
equal to 0. This defines the absolute entropy. For all elements and substances the
absolute entropy at a temperature T can be measured through

S(T ) =

∫ T

0

( q

T

)

rev
+

∆Htr

Ttr
. (3.48)

The last term accounts for contributions from any phase transition that takes place
between 0 K and T .

3.6 Two phase equilibrium

The (free) enthalpy function plays an important role in the study of two phase
equilibrium. Suppose have a closed system with movable and heat conducting walls
containing some vapour. We now slowly and isothermally decrease the volume of
the system, see Fig. 3.2. At a certain pressure, Pcoex a drop of liquid will appear.
Upon further compression the system pressure will remain equal to Pcoex, but the
fraction of liquid will increase. In other words, we can let some vapour condense at
constant temperature and pressure. In this process, according to Eq. (3.13),

∆G = w′ = 0. (3.49)

If we define gl as the free enthalpy per mole of liquid, gv the free enthalpy per mole
of vapour, dnl the increase of moles of liquid, and equivalently for the vapour dnv,
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Figure 3.2: Isothermal vapour-liquid phase
transition. We slowly and isothermally com-
press (decrease the volume of) a system con-
taining a vapour (A,B). At a certain pres-
sure Pcoex a drop of liquid will appear (C).
Upon further compression the system pres-
sure will remain equal to Pcoex, but the frac-
tion of liquid will increase (D) until the en-
tire system is filled with liquid. Further
compression of the system will result in a
rapid rise of the pressure (E,F).

we have

∆G = gldnl + gvdnv =
(

gl − gv
)

dnl = 0 (3.50)

⇒ gl = gv, (3.51)

where we have used the law of conservation of mass in a closed system. So we find
that for liquid-vapour coexistence the free enthalpy per mole of liquid must be equal
to the free enthalpy per mole of vapour. For both the liquid and the vapour the
free enthalpy per mole is some function of pressure and temperature, gv = gv(P, T )
and gl = gl(P, T ). The intersection of these two surfaces yields a line in the P − T
plane. In other words, liquid-vapour coexistence is only possible for certain values
Pcoex(T ) in the P − T plane, see Fig. 3.2.

We can estimate the shape of this line by analysing an infinitesimal change of
temperature T 7→ T + dT . This will be accompanied by an infinitesimal change of
free enthalpy per mole,

gl 7→ gl + dgl

gv 7→ gv + dgv.

Because gl = gv at each temperature, the differentials must also be equal:

dgl = dgv

(

∂gl

∂T

)

P

dT +

(

∂gl

∂P

)

T

dP =

(

∂gv

∂T

)

P

dT +

(

∂gv

∂P

)

T

dP. (3.52)

In the above equation we have used the chain rule for differentiation. What are
the (∂g/∂T ) and (∂g/∂P ) terms? We find the answer by using the definition of G,
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Eq. (3.14), and the fundamental equation of thermodynamics, Eq. (2.34), together
yielding

dG = −SdT + V dP, (3.53)

or in molar quantities s = S/n and v = V/n,

dg = −sdT + vdP. (3.54)

From this result we read
(

∂gl

∂T

)

P

= −sl,

(

∂gl

∂P

)

T

= vl, (3.55)

and equivalently for the vapour phase. We now continue with Eq. (3.52):

−sldT + vldP = −svdT + vvdP

⇒
(

dP

dT

)

coex

=
sv − sl

vv − vl
. (3.56)

This result is called the Clausius relation. Because g = h − Ts, we can write the
numerator sv − sl as

sv − sl =
1

T
(hv − hl) ≡ ∆hvap

T
, (3.57)

∆hvap is the enthalpy increase associated with evaporating one mole of liquid. Far
away from the critical point the molar volume of the vapour phase is usually much
larger than the molar volume of the liquid phase, and can be approximated by the
ideal gas equation of state, i.e.

vv − vl ≈ vv =
RT

P
. (3.58)

The Clausius relation can then be rewritten as
(

dP

dT

)

coex

=
∆hvap

R

P

T 2

d lnP

dT
= − d

dT

∆hvap

RT

Pcoex(T ) = P∞ exp

(

−∆hvap

RT

)

, (3.59)

which is called the Clapeyron equation. Note that we have assumed the the evapo-
ration enthalpy is approximately independent of temperature.
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3.7 Maxwell relations

Suppose a function F (x, y) depends on x and y, its differential form then is

dF (x, y) = A(x, y)dx+B(x, y)dy, (3.60)

with A and B functions depending on x and y. The partial derivatives of A and B
are not independent, but are related by the interchangeability of differentiation:

∂A

∂y
=

∂2F

∂y∂x
=

∂2F

∂x∂y
=
∂B

∂x
. (3.61)

Similarly, writing down differential forms of the thermodynamic functions we can
find some quite surprising relations between different thermodynamic properties.
Let us first write down these differentials:

dU = TdS − PdV (3.62)

dH = TdS + V dP (3.63)

dA = −SdT − PdV (3.64)

dG = −SdT + V dP. (3.65)

From these equations we can read the Maxwell relations

(

∂T

∂V

)

S

= −
(

∂P

∂S

)

V

(3.66)

(

∂T

∂P

)

S

=

(

∂V

∂S

)

P

(3.67)

(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

(3.68)

(

∂S

∂P

)

T

= −
(

∂V

∂T

)

P

. (3.69)

The Maxwell relations can be quite useful. For example, let us reconsider the two-
phase equilibrium of section 3.6. Let some liquid evaporate, at constant temperature
T , by means of volume work, i.e. by slightly increasing the volume V of the system.
The change of entropy with volume then is given by

(

∂S

∂V

)

T

=
(sl − sv)dnv

(vv − vl)dnv
=
sv − sl

vv − vl
. (3.70)
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The Maxwell relation Eq. (3.68) tells us that this is the same as the increase in
pressure if we slightly raise the temperature by supplying heat at constant volume
V . Because at coexistence the pressure is a function of the temperature only, we
have

(

∂P

∂T

)

V

=
dP

dT
. (3.71)

Combining these equations we again find the Clausius relation

dP

dT
=
sv − sl

vv − vl
. (3.72)

Another example. Suppose we somehow know the entropy (per mole) as a func-
tion of temperature at some reference pressure, s∗ = s∗(P0, T ). Then the entropy at
another pressure is given, in principle, by

s(P, T ) = s∗(P0, T ) +

∫ P

P0

dP

(

∂s

∂P

)

T

. (3.73)

The entropy is not an easily measurable property, but the temperature and volume
are. So, making use of Eq. (3.69), we rewrite this equation to

s(P, T ) = s∗(P0, T ) −
∫ P

P0

dP

(

∂v

∂T

)

P

. (3.74)

For an ideal gas v = RT/P , so

s(P, T ) = s∗(P0, T )−
∫ P

P0

dP
R

P
= s∗(P0, T )−R ln

(

P

P0

)

(ideal gas). (3.75)

In Problem 3-10 you are asked to calculate s = s(P, T ) for a van der Waals gas. In
Problem 3-11 you will need Maxwell relations to derive the so-called first and second
energy relations.

3.8 Open systems: the chemical potential and the

Gibbs-Duhem relation

Up to this point we have always considered closed systems, where the number of
molecules (or atoms in case of chemical reactions) is considered to be constant. We
will now also consider open systems, where molecules are allowed to enter from, or
escape to, an external reservoir. If we denote the number of molecules (or ater-
natively moles) in the system as N , we can write the extensive thermodynamic
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properties U , S, and V in terms of intensive thermodynamic properties u, v, and s,
which are the energy, entropy and volume per molecule (or per mole). Then

U = Nu → dU = Ndu + udN (3.76)

S = Ns → dS = Nds + sdN (3.77)

V = Nv → dV = Ndv + vdN. (3.78)

From these equations we find

dU = N (Tds− Pdv) + udN

= TdS − TsdN − PdV + PvdN + udN

= TdS − PdV + (u− Ts+ Pv) dN

≡ TdS − PdV + µdN. (3.79)

In the last line we have defined the chemical potential µ. Comparing with Eq. (3.14),
we see that the chemical potential is nothing but the Gibbs free energy per molecule
(or per mole):

µ = g = G/N = u− Ts+ Pv. (3.80)

Differentials of the other thermodynamic functions are given similarly by

dH = TdS + V dP + µdN (3.81)

dA = −SdT − PdV + µdN (3.82)

dG = −SdT + V dP + µdN. (3.83)

New Maxwell relations can easily be derived from these equations (Problem 3-12).
We also see that the chemical potential can be calculated as

µ =

(

∂U

∂N

)

S,V

=

(

∂H

∂N

)

S,P

=

(

∂A

∂N

)

T,V

=

(

∂G

∂N

)

T,P

. (3.84)

Writing Eq. (3.80) as dG = d(Nµ) = Ndµ+µdN and comparing with Eq. (3.83)
we find an interesting relation:

SdT − V dP +Ndµ = 0. (3.85)

This important results is called the Gibbs-Duhem relation. It states that never three
intensive variables (T , P , and µ) can be independent.
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3.9 The chemical potential and fugacity

In section 3.6 we have seen that two phases I and II of a pure compound can only
coexist if gI = gII , which we now write as µI = µII . This is the first example of
an equilibrium condition, of which we will derive more in the next chapter. It is
therefore useful to study the dependence of µ on P and T .

3.9.1 µ as a function of T

The easiest way to calculate µ as a function of T is to use

µ(P, T ) = h(P, T ) − Ts(P, T ). (3.86)

Usually h and s are tabulated at standard conditions T 0 = 298.15 K and P 0 = 1
atm. (see sections 3.5.2 and 3.5.3). We can then calculate h and s at an arbitrary
temperature T and at P = P 0 using

h(P 0, T ) = h0 +

∫ T

T 0

cP dT ′ (3.87)

s(P 0, T ) = s0 +

∫ T

T 0

cP
T ′

dT ′. (3.88)

To calculate these integrals, we need cP at given pressure as a function of T . Often
it is sufficiently accurate to assume that cP is independent of temperature, in which
case

µ(P 0, T ) =
{

h0 − Ts0
}

+ cP
(

T − T 0
)

− cPT ln

(

T

T 0

)

. (3.89)

Note that h0 − Ts0 is not equal to µ0 ≡ µ(P 0, T 0). In Problem 3-15 you are asked
to calculate coexistence properties of graphite and diamond.

3.9.2 µ as a function of P

Let us first focus on systems in which the pressure is so low that it behaves as an
ideal gas. In that case we can write

(

∂µ

∂P

)

T

= v =
RT

P
(3.90)

µ(P, T ) = µ∗(T ) +RT ln(P/P 0). (3.91)

In the first line we have used the Gibbs-Duhem relation Eq. (3.85). The expression
µ∗(T ) in principle depends on our choice of reference pressure P 0. Usually the
standard pressure is used, in which case µ∗(T ) is the chemical potential of an ideal
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gas at one atmosphere. µ∗(T ) can be determined experimentally from a real gas by
measuring µ at given T as a function of P , and plotting the result against RT lnP .
At low enough pressure the gas behaves ideal and the plot is approximately a straight
line. Extrapolating to P 0 = 1 atm. yields the value of µ∗(T ). Note that the actual
µ(P 0, T ) equals µ∗(T ) only when the system behaves like an ideal gas at given
temperature and at P 0 = 1 atm.

For an arbitrary system, be it a gas, liquid, or solid, we define the fugacity
coefficient φ and the fugacity f by

µ(P, T ) = µ∗(T ) +RT ln(P/P 0) +RT lnφ

= µ∗(T ) +RT ln f(P/P 0, T ). (3.92)

So RT lnφ is the correction to ideal gas behaviour. In the limit P → 0, φ will go to
1. The pressure dependence of φ is given by

(

∂

∂P
RT lnφ

)

T

= v − RT

P

RT lnφ =

∫ P

0

(

v − RT

P ′

)

dP ′. (3.93)

This formula is only useful if one knows v as a function of P and T . Usually one
knows P as a function of v and T , in which case the integral in Eq. (3.93) is difficult
to evaluate. For these cases, one can derive other formulas, which we will not go
into.

Now that we know µ as a function of its characteristic variables (P and T ) we can
easily derive other thermodynamic properties. In summary (prove these yourself!):

µ(P, T ) = µ∗(T ) +RT lnP +

∫ P

0

{

v − RT

P ′

}

dP ′ (3.94)

s(P, T ) = s∗(T ) − R lnP −
∫ P

0

{(

∂v

∂T

)

P ′

− R

P ′

}

dP ′ (3.95)

h(P, T ) = h∗(T ) +

∫ P

0

{

v − T

(

∂v

∂T

)

P ′

}

dP ′ (3.96)

cP (P, T ) = c∗P (T ) − T

∫ P

0

(

∂2v

∂T 2

)

P ′

dP ′. (3.97)

Note that the integrals, when applied to an ideal gas, yield zero.
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Figure 3.3: Experiment to measure the
specific heat ratio.

Problems

3-1. Heat capacity of the harmonic crystal. Calculate the temperature T and
then the energy U(T ) of the harmonic crystal. Then prove Eq. (3.27).
3-2. Work done by quasi-static adiabatic compression. An ideal gas is
compressed quasi-statically and adiabatically from a state (V1, P1) to a state (V2, P2).
Show that the work done on the system is

w =
P2V2 − P1V1

γ − 1
.

3-3. Measurement of the specific heat ratio of a dilute gas. Consider the
experimental setup in Fig. 3.3. An amount of gas is held in a flask at a pressure
P1 slightly higher than the pressure P0 of the surrounding environment. The flask’s
walls can conduct heat, so the temperature of the gas inside the flask equals the
temperature of the surrounding environment, T1 = T0. At a given moment we open
the valve for a few seconds to let some gas escape until the pressure inside equals
the outside pressure, P2 = P0. We notice that the temperature has dropped in the
process, T2 < T1. After closing the valve, the temperature slowly increases again,
until T3 = T0. We then measure a pressure P3.

Express γ = Cp/Cv in terms of P1, P2, and P3.
(Hint: the expansion of the gas can be considered to be an adiabatic process.

Define the system as the amount of gas that eventually remains in the flask.)

3-4. Entropy and heat. An ideal gas undergoes a process from (P1, V1) to (P2, V2).
We consider two different processes:
A. Reversibly and isothermally at T1 until the end volume, and then reversibly and
isochorically to the end state.
B. Reversibly and isochorically to T2, and then reversibly and isothermally to the
end state.
Draw both processes in a P − V diagram. Calculate the total heat added to the
system Q =

∫

q, and the entropy increase ∆S =
∫

(q/T ) for both processes. Con-
clusion?
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3-5. Entropy in a reversible process. An ideal gas is expanded from (T1, V1) to
(T1, V2). Calculate ∆S for the following two processes:
A. A reversible isothermal expansion.
B. A reversible isochoric process followed by a reversible isobaric expansion.
Conclusion?

3-6. Carnot processes. A Carnot process is a reversible cycling process between
two isotherms and two adiabatics. Suppose we have a work delivering Carnot process
(i.e. w is negative) using an ideal gas between temperatures Th and Tl. We denote
the total amount of heat delivered (per cycle) at the high and low isotherm by Qh

and Ql, respectively (note that a negative Q means the heat is flowing out of the
system). We define the efficiency as

ǫ = −w/Qh.

a) Draw the process in a P − V diagram and indicate the direction of the process.
b) Calculate Qh/Ql.
c) Calculate ǫ.

3-7. Entropy in an irreversible process. In an isolated system we have two
copper blocks of equal mass and equal volume, with unequal temperatures TA and
TB, separated by a rigid, thermally insulating wall. We now make the wall ther-
mally conducting. An irreversible process will take place from (TA, V ), (TB, V ) to
(T ′

A, V ), (T ′

B, V ). Using conservation of energy, express T ′

B in terms of (TA, TB, T
′

A).
Calculate ∆S for this irreversible process. For what value of T ′

A is ∆S maximal?
You may assume that the specific heat CV is independent of temperature.

3-8. Temperature dependent specific heat. Suppose that in the above case
the specific heat depends on temperature, as

CV = A +BT

where A = 8 J/K and B = 2×10−2 J/K2. If the two blocks are initially at TA = 400
K and TB = 200 K, then what is the final temperature and what is the total change
in entropy?

3-9. Reaction enthalpy at miscellaneous temperature. Prove that the re-
action enthalpy at temperature T and standard pressure P 0 = 1 atm. is given
by

∆hr(T, P
0) = ∆hr(T

0 K, P 0) +

∫ T

T 0

dT ′∆cpr(T
′).
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What if phase transitions occur between T 0 = 298.15 K and T ?

3-10. Entropy of a van der Waals gas. Using the van der Waals equation of
state Eq. (2.64), calculate the molar entropy as a function of pressure and temper-
ature s = s(P, T ). You may assume that the entropy s∗(P0, T ) at some reference
pressure P0 is known.

3-11. First and second energy equations. Using the Maxwell relations, derive
the first and second energy equations (assume N is constant everywhere):

(

∂U

∂V

)

T

= T

(

∂P

∂T

)

V

− P

(

∂U

∂P

)

T

= −T
(

∂V

∂T

)

P

− P

(

∂V

∂P

)

T

.

These equations are very useful, because if we know the equation of state of a sys-
tem (i.e. the relation between P , V , and T ), we can use these equations to gain
information about the internal energy U of that system.

3-12. Maxwell relation involving N . Write down the Maxwell relation for the
following partial derivative:

(

∂V

∂N

)

T,P

.

3-13. The Maxwell construction. In section 2.8 we have introduced the Maxwell
construction to find the vapour pressure (or Pcoex) at a certain temperature. This
construction may be stated mathematically as

Pcoex(T )
(

vv − vl
)

=

∫ vv

vl

P (v, T )dv,

where vv and vl are the vapour and liquid molar volumes at coexistence. Give a
proof of this construction.

3-14. Equation of state. For a certain compound we know that

u(T, v) = f1(T ) − a/v

s(T, v) = f2(T ) +R ln(v − b),

where a and b are constants. Derive the equation of state P = P (T, v).

3-15. Coexistence of graphite and diamond. Graphite and diamond are two
different phases of carbon. We now give the following quantities at standard condi-
tions (T 0 = 298.15 K and P 0 = 1 atm.):
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s0 µ0 ρ
graphite 5.694 J/mol/K -1698 J/mol 2.22 g/cm3

diamond 2.439 J/mol/K 1167 J/mol 3.15 g/cm3

ρ is the mass density. You may assume that the density and entropy are independent
of temperature and pressure.
a) At which temperature do diamond and graphite coexist at P 0 = 1 atm.?
b) At which pressure do diamond and graphite coexist at T = 2000 K? (Hint: What
is the slope of the phase coexistence line Pcoex(T )?)
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Chapter 4

Second law of thermodynamics,

equilibrium, and stability

4.1 The second law of thermodynamics

Irreversible processes take place after an internal constraint has been removed. By
the very nature of a constraint, the number of accessible states must increase or
remain the same,

Ωc → Ωu ≥ Ωc. (4.1)

An example will make things clearer.
Suppose we have an adiabatially sealed system, as in Fig. 4.1 The system is

composed of two compartments, separated from each other by an insulating wall.
The insulating wall is an internal constraint, preventing energy to flow from com-
partment I to compartment II or vice versa. With each state in compartment I we
can combine one state in compartment II. The total number of possible states in

Figure 4.1: Example of re-
moving an internal constraint.
An adiabatically sealed sys-
tem consists of two compart-
ments I and II, separated by
an insulating wall (top). The
wall constrains the energy in
both compartments. As soon
as the wall is made conduct-
ing (bottom) energy can flow
freely from one compartment
to the other.
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Figure 4.2: Statistical meaning of the
second law of thermodynamics. After re-
moving the internal constraint (ǫ = 0),
the system is free to partition its energy
over the available compartments. An
overwhelmingly large fraction of all pos-
sible states will be in the neighbourhood
of ǫ = ǫmax. The system will therefore
evolve most likely (arrow) to a state in
which ǫ = ǫmax.

this constrained system is therefore

Ωc = ΩI(UI)ΩII(UII). (4.2)

If we now suddenly remove the internal constraint, i.e., we make the insulating wall
conducting, energy can be exchanged between the two systems. The total number
of states in the unconstrained system is now given by a sum, or for the continuous
case an integral, over all possible values for the energy exchange ǫ:

Ωu =

∫

dǫ ΩI(UI + ǫ)ΩII(UII − ǫ). (4.3)

Note that ΩI(UI+ǫ) is a fast increasing function of ǫ and ΩII(UII−ǫ) a fast decreasing
function of ǫ (explain why?). The integrand in Eq. (4.3) is therefore a sharply peaked
function around some maximum ǫ = ǫmax, see Fig. 4.2. An overwhelmingly large
fraction of all possible states will be in the neighbourhood of ǫmax, so the system is
most likely to evolve to this value of ǫ (arrow in Fig. 4.2).

We can approximate the narrow distribution of ΩI(UI + ǫ)ΩII(UII − ǫ) as a
Gaussian centered around ǫ = ǫmax:

ΩI(UI + ǫ)ΩII(UII − ǫ) ≈ ΩI(UI + ǫmax)ΩII(U − ǫmax) exp
{

−c(ǫ− ǫmax)
2
}

(4.4)

The entropy after removing the internal constraint now reads

Su = kB ln ΩI(UI + ǫmax) + kB ln ΩII(UII − ǫmax)

+kB ln

∫

dǫ exp
{

−c(ǫ− ǫmax)
2
}

. (4.5)

The last factor represents fluctuations around the average. It is very small compared
to the other terms (as we will show in chapter 7), and will be neglected. So the
entropy before and after removing the internal constraint is given by

Sc = kB ln ΩI(UI) + kB ln ΩII(UII) (4.6)

Su = kB ln ΩI(UI + ǫmax) + kB ln ΩII(UII − ǫmax). (4.7)

Several interesting conclusions can be drawn on the basis of these last two equations.
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1. Neglecting the fluctuations is equivalent to the thought experiment in which
the system is split into two systems (separated by an insulating wall), one of
entropy kB ln ΩI(UI + ǫmax) and one of entropy kB ln ΩII(UII − ǫmax). This is
similar to the statement that the full distribution ΩI(UI − ǫ)ΩII(UII + ǫ), for
all practical purposes, is well represented by only its maximum.

2. Because the maximum ΩI(UI + ǫmax)ΩII(UII − ǫmax) is, by definition, larger
or equal to the constrained case ΩI(UI)ΩII(UII), we have Su ≥ Sc. In general

(∆S)adiab,closed ≥ 0. (4.8)

This is the second law of thermodynamics. It states that the total entropy
in an adiabatically sealed, closed system increases or remains the same if an
internal constraint is removed.

3. After removing the internal constraint, given the remaining internal constraints,
energy and mass will redistribute. This process will stop in an equilibrium
state where the entropy is maximal (we emphasise again: given the remaining
internal constraints). Mathematically this is expressed as

d

dǫ
ΩI(UI + ǫ)ΩII(UII − ǫ)

∣

∣

∣

∣

ǫ=ǫmax

= 0

Ω′

I(UI + ǫmax)ΩII(UII − ǫmax)
d(UI + ǫ)

dǫ
+

ΩI(UI + ǫmax)Ω
′

II(UII − ǫmax)
d(UII − ǫ)

dǫ
= 0

Ω′

I(UI + ǫmax)

ΩI(UI + ǫmax)
− Ω′

II(UII − ǫmax)

ΩII(UII − ǫmax)
= 0

(lnΩI)
′|UI+ǫmax

− (ln ΩII)
′|UII−ǫmax

= 0, (4.9)

where a prime (′) means taking the derivative of the function with respect to
its argument. Using the definition 1/T = (∂S/∂U)V,N , we recognise

TI |UI+ǫmax
= TII |UII−ǫmax

. (4.10)

Thus we have proved that the entropy is maximal when the temperature in
both systems is equal. In the next section we will give a more traditional
thermodynamic derivation.

It should be noted that the meaning of internal constraint is very broad. In fact,
every non-quasistatic process can be described as taking away an internal constraint.
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4.2 Equilibrium

So, the second law of thermodynamics says that the entropy is maximal in equilib-
rium, given the possible constraints. Can we predict more with this?

4.2.1 Homogeneous phase

Suppose we have an adiabatically sealed macroscopic system consisting of one homo-
geneous phase, say a liquid, in equilibrium. The system contains N particles, has a
volume V and a total energy U . We can now perform the thought-experiment of di-
viding up the volume into A+1 parts labelled 0, . . . , A. These parts are smaller than
the original volume, but still macroscopically large. In principle we can redistribute
the particles and energy in anyway we want. We call a particular redistribution a
trial state. Because the entropy is maximum in our original state, for any trial state
sufficiently close to our original state we must have

Strial − S = dStrial = 0. (4.11)

Because the system is adiabatically sealed and closed we also have

A
∑

α=0

dUα = 0 → dU0 = −
A

∑

α=1

dUα (4.12)

A
∑

α=0

dNα = 0 → dN0 = −
A

∑

α=1

dNα. (4.13)

Because of the additivity of entropy, we can now rewrite dStrial as

dStrial =

A
∑

α=0

dSα =

A
∑

α=0

{

1

T α
dUα − µα

T α
dNα

}

=
A

∑

α=1

{(

1

T α
− 1

T 0

)

dUα −
(

µα

T α
− µ0

T 0

)

dNα

}

= 0. (4.14)

This must be valid for any choice of dUα and dNα. We must therefore conclude
that

1

T α
=

1

T 0
,

µα

T α
=
µ0

T 0
. (4.15)

So the temperature and chemical potential must be the same everywhere in the
system if it is in equilibrium. This automatically implies that the pressure P is also
the same everywhere.

The above discussion is valid as long as there are no external fields. In Problem
4-1 we will consider the case where an external field is present.
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4.2.2 Two phase system, one component

The above arguments apply equally well to a system containing two phases, say a
liquid and a vapour. The equilibrium conditions for liquid-vapour coexistence are
therefore

T l = T v = T (4.16)

P l = P v = P (4.17)

µl = µv = µ. (4.18)

Often there is an expression for the chemical potential µl(P, T ) of the liquid phase
and µv(P, T ) of the vapour phase. Equating these expressions learns us at which
temperatures and pressures phase coexistence is possible. In fact, we have already
used this in section 3.6 to derive the Clapeyron equation (note that g = G/N = µ).

4.2.3 Two phase system, two components

The same argument also applies to a system containing two phases of two compo-
nents, say a binary liquid of components A and B, coexisting with a binary vapour
of components A and B. The conditions for coexistence are

T l = T v (4.19)

P l = P v (4.20)

µl
A = µv

A (4.21)

µl
B = µv

B. (4.22)

In combination with experimental relations for the chemical potentials, this enables
us to calculate the fraction of A and B in the liquid and in the vapour phase as
a function of pressure and temperature. For example, in many cases the chemical
potential of the vapour phase (of a component A) is given by

µv
A = µ∗

A(T ) +RT lnP +RT ln yA, (4.23)

where µ∗

A(T ) is a function of temperature only, and yA is the mole fraction of com-
ponent A in the vapour phase. The chemical potential of the liquid phase (of com-
ponent A) on the other hand is often taken to be that of a so-called ideal liquid1

µl
A = µpure l

A (T, P ) +RT ln xA

≈ µpure l
A (T, P σ

A(T )) +RT lnxA

= µpure v
A (T, P σ

A(T )) +RT ln xA

= µ∗

A(T ) +RT lnP σ
A(T ) +RT ln xA. (4.24)

1A derivation for the chemical potential in a binary liquid will be given in section 9.7.
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In the first line µpure l
A (T, P ) is the chemical potential of a liquid phase of pure

(100%) component A, and xA is the mole fraction of component A in the actual
liquid phase. In the second line we have used the fact that the dependence on
pressure of the chemical potential is much weaker in the liquid than it is in the
vapour. The reason for this can be seen from (∂µ/∂P )T = v, and the fact that the
molar volume of the liquid phase is much smaller than that of the vapour phase (if
we are not close to the critical point). At phase coexistence, µl

A = µv
A, the pressure

in the liquid phase will therefore be close to the saturation pressures P σ
A(T ) of pure

component A at that particular temperature. In the last line we have used Eq. (4.23)
again. The same arguments apply to component B.

In Problem 4-2 you are asked to calculate the liquid-vapour coexistence lines in
a pressure-composition diagram. Such diagrams are very useful to understand for
example the process of distillation.

4.3 Stability

As we have seen, in equilibrium the entropy S is maximal, given the constraints. No
constraint forbids a homogeneous system to split into two phases, yet it does not.
From this we conclude that the entropy of the homogeneous state is larger than the
entropy of the phase-separated state. This can be used to derive stability criteria
for the homogeneous phase.

Suppose we split an adiabatically sealed homogeneous system in two phases. A
fraction x of the particles will be in phase 1, the remaining fraction (1−x) in phase
2:

N1 = xN, N2 = (1 − x)N. (4.25)

In the two phases the energy per particle, the volume per particle, and the entropy
per particle will be different. We now denote the energy of phase 1 if it contained

all N particles by UA, the energy of phase 2 if that contained all N particles by UB,
and similarly VA and VB for the volume and SA and SB for the entropy. The actual
energy, volume, and entropy of phase 1 and 2 will then be:

U1 = xUA, U2 = (1 − x)UB, (4.26)

V1 = xVA, V2 = (1 − x)VB, (4.27)

S1 = xSA, S2 = (1 − x)SB. (4.28)

The total energy must remain the same, so

U1 + U2 = xUA + (1 − x)UB = U (4.29)

x =
U − UB

UA − UB

. (4.30)
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Figure 4.3: A homogeneous phase is
stable against phase separation if the
entropy is a convex function of energy
S. Any trial separation into a phase of
energy A and a phase of energy B will
then lead to an entropy which is lower
(because it must be on the dotted line)
than the entropy of the homogeneous
phase.

According to the second law of thermodynamics we now demand that

xSA + (1 − x)SB < S (4.31)

UB − U

UB − UA
SA +

U − UA

UB − UA
SB < S. (4.32)

We already know that the graph of S(U) must be a monotonously increasing func-
tion, because (∂S/∂U) = 1/T > 0. But from Eq. (4.32) we can learn more. The
left hand side of this equation describes a straight line between (UA, S(UA)) and
(UB, S(UB)). The inequality must be true for any UA and UB. Therefore the curve
S(U) must be above any line joining two points on its surface. In other words, it
must be a concave function of U , see Fig. 4.3:

(

∂2S

∂U2

)

V

< 0 (stability) (4.33)

This has consequences for the specific heat of a homogeneous system:

(

∂2S

∂U2

)

V

=

(

∂1/T

∂U

)

V

= − 1

T 2

(

∂T

∂U

)

V

= − 1

T 2CV
< 0 (4.34)

⇒ CV > 0. (4.35)

From the condition of stability of the homogeneous phase we have derived that the
specific heat must be positive. If it were negative, the system would not equilibrate
and heat would flow from cool regions to hot regions!

A more general treatment yields other conditions on the response functions.
Therefore a little digression on response functions. These are properties which rep-
resent the response of the system when you change one of the thermodynamic pa-
rameters. All of these are second derivatives of some thermodynamic function. For
example second derivatives of the free enthalpy G are the specific heat at constant
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pressure, the compressibility at constant temperature, and the thermal expansion
coefficient at constant pressure:

CP ≡ T

(

∂S

∂T

)

P,N

= −T
(

∂2G

∂T 2

)

P,N

(4.36)

κT ≡ − 1

V

(

∂V

∂P

)

T,N

= − 1

V

(

∂2G

∂P 2

)

T,N

(4.37)

αP ≡ 1

V

(

∂V

∂T

)

P,N

=
1

V

(

∂2G

∂T∂P

)

N

. (4.38)

Similar definitions hold for CV and κS. However, there are only 3 independent

response functions. All other response functions, i.e. second derivatives of all other
thermodynamic functions, can be derived from the 3 independent ones. This is
logical, because all other thermodynamic functions can be derived from any one
thermodynamic function. For example, the specific heat at constant volume is given
by

CV = T

(

∂S

∂T

)

V

= T

(

∂S

∂T

)

P

+ T

(

∂S

∂P

)

T

(

∂P

∂T

)

V

= CP − T

(

∂V

∂T

)

P

(

∂P

∂T

)

V

= CP + T

(

∂V

∂T

)

P

(∂V/∂T )P

(∂V/∂P )T

= CP − TV
α2

P

κT
. (4.39)

Therefore CP > CV , as we have already seen for the ideal gas. In Problem 4-3 you
are asked to show that κS/κT = CV /CP , so κS < κT also.

Now back to the stability conditions. The same argument that was made for
S(U) may also be made for S(V ). In general, therefore, S(U, V ) must be a concave
function of both U and V , see Fig. 4.4 (top). In many cases it is easier to swap axes,
and use the fact that U(S, V ) must be a convex function of S and V , i.e. d2U > 0,
see Fig. 4.4 (bottom). Let us now analyse the consequences:

dU =

(

∂U

∂S

)

V

dS +

(

∂U

∂V

)

S

dV (4.40)

d2U =

[(

∂2U

∂S2

)

V

dS +

(

∂2U

∂V ∂S

)

dV

]

dS +

[(

∂2U

∂V ∂S

)

dS +

(

∂2U

∂V 2

)

S

dV

]

dV

=

(

∂2U

∂S2

)

V

d2S + 2

(

∂2U

∂V ∂S

)

dSdV +

(

∂2U

∂V 2

)

S

d2V > 0. (4.41)
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Figure 4.4: (Top figure:) For stabil-
ity, the entropy S of a homogenous
phase must be a concave function of
both U and V . (Bottom figure:) Swap-
ping axes, the energy U must be a con-
vex function of both S and V . In both
figures dashed lines connect points of
equal entropy.

This must be true for any dS and any dV . Therefore we find the following conditions
on the response functions:

(

∂2U

∂S2

)

V

=

(

∂T

∂S

)

V

=
T

CV
> 0 → CV > 0 (4.42)

(

∂2U

∂V 2

)

S

= −
(

∂P

∂V

)

S

=
1

V κS

> 0 → κS > 0 (4.43)

(

∂2U

∂S2

)

V

(

∂2U

∂V 2

)

S

−
(

∂2U

∂V ∂S

)2

> 0 → κT

CV

> 0. (4.44)

Thus a stable system must have positive CV , κS, and κT .
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Problems

4-1. A liquid or vapour in an external field In this problem we will consider
a closed system containing a liquid or vapour in a gravitational field g. A particle
of mass m located in a cell α at height hα has a gravitational energy of mghα. A
particular redistribution of the particles and the energy may be therefore be written
as dUα = T αdSα +µαdNα +mghαdNα. Show that in the presence of a gravitational
field:

T α = T 0, µα +mghα = µ0 +mgh0,

(Hint: The law of conservation of energy states that the sum of internal energy and
gravitational energy is constant.)

The chemical potential (per particle) may be written as µ(P, T ) = µ∗(T ) +
kBT lnP . Show that the pressure in cell α relative to the pressure in cell 0 is given
by

P α

P 0
= exp

[

−mg (hα − h0)

kBT

]

4-2. Phase coexistence in a binary mixture. Suppose we have a binary mix-
ture of components A and B at temperature T . In a range of pressures there is
liquid-vapour coexistence, with varying composition of both phases; the liquid con-
tains a mole fraction xA of component A and therefore xB = 1−xA of component B.
Similarly, the vapour contains a mole fraction yA of component A and yB = 1 − yA

of component B. Calculate P (xB) (the “liquid line”) and P (yB) (the “vapour line”).
Use the expressions in section 4.2.3 for the chemical potentials. Assume that the
saturation pressures P σ

A(T ) and P σ
B(T ) of the pure components are known.

4-3. Adiabatic and isothermal compressibility. Show that

κS

κT
=
CV

CP

(Hint: Consider the differential of the entropy as a function of V and P , and next
the differential of the temperature as a function of V and P .) Can you explain why
it is easier to compress a system when it is coupled to a heat bath than when it is
compressed adiabatically?

4-4. Isobaric and isochoric specific heat. Show that

CP − CV =

[

P +

(

∂U

∂V

)

T

](

∂V

∂T

)

P

.

Using this formula, evaluate CP − CV for an ideal gas and for a van der Waals gas.
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